Solving log-transformed random diffusion problems by stochastic Galerkin mixed finite element methods

نویسندگان

  • Elisabeth Ullmann
  • Catherine Powell
  • Catherine E. Powell
چکیده

Stochastic Galerkin finite element discretisations of PDEs with stochastically nonlinear coefficients lead to linear systems of equations with block dense matrices. In contrast, stochastic Galerkin finite element discretisations of PDEs with stochastically linear coefficients lead to linear systems of equations with block sparse matrices which are cheaper to manipulate and precondition in the framework of Krylov subspace iteration. In this paper we focus on mixed formulations of second-order elliptic problems, where the diffusion coefficient is the exponential of a random field, and the priority is to approximate the flux. We build on the previous work [Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems, SIAM J. Sci. Comput., 34(2012), pp.A659–A682] and reformulate the PDE model as a first-order system in which the logarithm of the diffusion coefficient appears on the left-hand side. We apply a stochastic Galerkin mixed finite element method and discuss block triangular and block diagonal preconditioners for use with GMRES iteration. In particular, we analyse a practical approximation to the Schur complement of the Galerkin matrix and provide spectral inclusion bounds. Numerical experiments reveal that the preconditioners are completely insensitive to the spatial mesh size, and are only slightly sensitive to the statistical parameters of the diffusion coefficient. As a result, the computational cost required to approximate the flux when the diffusion coefficient is stochastically nonlinear grows only linearly with respect to the total problem size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random Data

Abstract. We introduce a stochastic Galerkin mixed formulation of the steady-state diffusion equation and focus on the efficient iterative solution of the saddle-point systems obtained by combining standard finite element discretisations with two distinct types of stochastic basis functions. So-called mean-based preconditioners, based on fast solvers for scalar diffusion problems, are introduce...

متن کامل

Efficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random

We introduce a stochastic Galerkin mixed formulation of the steady-state diffusion equation and focus on the efficient iterative solution of the saddle-point systems obtained by combining standard finite element discretizations with two distinct types of stochastic basis functions. So-called mean-based preconditioners, based on fast solvers for scalar diffusion problems, are introduced for use ...

متن کامل

One-step Taylor–Galerkin methods for convection–diffusion problems

Third and fourth order Taylor–Galerkin schemes have shown to be efficient finite element schemes for the numerical simulation of time-dependent convective transport problems. By contrast, the application of higher-order Taylor–Galerkin schemes to mixed problems describing transient transport by both convection and diffusion appears to be much more difficult. In this paper we develop two new Tay...

متن کامل

A Kronecker Product Preconditioner for Stochastic Galerkin Finite Element Discretizations

The discretization of linear partial differential equations with random data by means of the stochastic Galerkin finite element method results in general in a large coupled linear of system of equations. Using the stochastic diffusion equation as a model problem, we introduce and study a symmetric positive definite Kronecker product preconditioner for the Galerkin matrix. We compare the popular...

متن کامل

Kernel-based Collocation Methods versus Galerkin Finite Element Methods for Approximating Elliptic Stochastic Partial Differential Equations

We compare a kernel-based collocation method (meshfree approximation method) with a Galerkin finite element method for solving elliptic stochastic partial differential equations driven by Gaussian noise. The kernel-based collocation solution is a linear combination of reproducing kernels obtained from related differential and boundary operators centered at chosen collocation points. Its random ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017